Abstract

Eu3+-doped TiO2 nanocrystals with three kinds of morphologies (nanorods, nanoparticles, and submicrospheres) have been successfully fabricated in cetyltrimethylammonium bromide (CTAB)/water/cyclohexane/n-pentanol reverse micelle by hydrothermal method for the first time and their photoluminescence (PL) properties have also been studied. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), FT-IR, and PL spectra were used to characterize the samples. The acidic and alkaline conditions of the microemulsion play an important role in determining the geometric morphologies of the final products. TiO2:Eu3+ with three different morphologies all exist only in anatase phase and show high luminescence intensity without further calcinations, which show its advantages of energy saving. The shape of emission spectra was independent of the morphologies of the products but the luminescence intensity of the TiO2:Eu3+ materials is strongly dependent on their morphology. The results show that TiO2:Eu3+ nanorods possess the strongest luminescence intensity among the three nanostructured samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call