Abstract

Two-dimensional transition metal carbide/nitride (MXene) conductive inks are promising for scalable production of printable electronics, electromagnetic devices, and multifunctional coatings. However, the susceptible oxidation and poor rheological property seriously impede the printability of MXene inks and the exploration of functional devices. Here, we proposed a controllable surface grafting strategy for MXene flakes (p-MXene) with prepolymerized polydopamine macromolecules to protect against water and oxygen, enrich surface chemistry, and significantly optimize the rheological properties of the inks. The obtained p-MXene inks can adapt to screen-printing and other high-viscosity processing techniques, facilitating the development of patterned electromagnetic films and coatings. Interestingly, the printed MXene polarizer can freely switch and quantitatively control microwave transmission, giving an inspiring means for smart microwave modulation beyond the commonly reported shielding function. Moreover, the introduction of polydopamine nanoshell enables the infrared emissivity of MXene coating to be adjusted to a large extent, which can produce infrared anti-counterfeiting patterns in a thermal imager. Therefore, multifunctional antioxidant p-MXene inks will greatly extend the potential applications for the next-generation printable electronics and devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call