Abstract
The programmable shape transition of a two-dimensional sheet to a three-dimensional (3D) structure in response to a variety of external stimuli has recently attracted increasing attention. Among the various shape changing materials, shape memory polymers (SMPs) can fix their temporary shape and/or their length and recover under proper thermal treatment. In this work, we create a bilayer composite by bonding one layer of elastomer with one layer of stretched SMPs, which can undergo a series of shape transitions via the storage and release of internal stresses. The programed shapes are achieved by adjusting the orientation and elongation of the SMPs. Meanwhile, the 3D structures exhibit tristability and can transit between hemihelical, left-handed helical, and right-handed helical shapes. Both theoretical analysis and finite element simulations were conducted to understand the mechanism of shape transformation and used to predict the deformed configuration by adjusting preprogramming parameters. Our work provides a new strategy and design space for fabricating smart reconfigurable structures and paves way for the design and development of bioinspired four-dimensional active matter for a broad range of applications in intelligent materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.