Abstract

The controllable self-growth of a supramolecular hydrogel of folic acid (FA) was developed based on the conduction of transition metal ions. The growth behavior of the gel could be flexibly controlled by adjusting the ambient environmental factors such as gelator concentration, temperature and external chemical stimuli. The obtained gel was characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), atomic force microscopy (AFM) and rheological measurements. Differential scanning calorimetry (DSC) showed that the gel possessed excellent thermal stability. A mechanism for the fibrous formation of the gel was suggested based on the experimental results of Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy (NMR) and UV-Vis spectroscopy. The gel exhibited multiple stimuli-responsive properties to changes in ligand and pH. Furthermore, the gel can be incorporated into multi-layer hydrogels in both artificial and spontaneous ways, showing the advantages of self-growth and flexible control of the gel system. This novel hydrogel and the preparation strategy may provide a new route to rationally design advanced materials for biomedical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.