Abstract

A unique structural transition from pomegranate-like monodisperse mesoporous silica microspheres (M-MSMs) with tunable mesopores to mesoporous silica microcapsules has been reported. The unique evolution occurred together with varying the cross-linking degrees (CLDs) of templates. Herein, using monodisperse sulfonated cross-linked polystyrene (S-CLPS) as templates, S-CLPS/SiO2 composite microspheres were synthesized by the sol-gel method. Subsequently, the templates were removed by calcination to obtain the M-MSMs or microcapsules. The pore sizes of M-MSMs could be tailored from 3.2 to 7.4 nm by facilely varying the CLDs from 0.5 to 20%. Interestingly, mesoporous silica microcapsules were gradually formed when the CLDs were beyond 20%. Meanwhile, the specific surface area also could be adjusted by this strategy without hardly affecting the monodispersity, and the specific surface area increased to 391.9 m2/g. Significantly, Au@M-MSM was prepared by supporting Au nanoparticles (NPs) on M-MSM and used as nanocatalysts to reduce 4-nitrophenol (4-NP). The ultrathin shell and interconnected three-dimensional (3D) porous structure of M-MSMs can increase the mass transfer and protect the Au NPs from leakage, which reveals high recyclability and high conversion (>95%) after 10 regeneration-catalysis cycles. This approach provides a nanotechnology platform for the preparation of mesoporous silica materials with different microstructures, which will have enormous potential in practical applications involving different molecular sizes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.