Abstract

In this paper, copper base sulfide nanoparticles (Cu2S, CuS, CuO/Cu2O/Cu2S, Cu2S/CuS, CuS/S) were synthesized in polyethylene glycol (PEG)-400 by a one-step method and by tuning the molar ratios of Cu:S (1:0.1–1:3) with copper acetate and sublimed sulfur as sources. The interaction of elemental sulfur with copper ion in PEG was analyzed in detail to elucidate the formation mechanism. With the change of the molar ratio of copper to sulfur, the products exhibit a variety of composition, morphology and size. When the molar ratio of copper to sulfur is 1:1, the product is CuS nanoflakes with particle size of 200–300 nm and thickness of 30 nm. The CuS nanoflakes with a smaller band gap value of 2.01eV can photodegrade 96% (48 mg/g) of rhodamine B (RhB) in 5 min in the presence of H2O2. This route is simple, environmentally friendly and it offers a more promising way to prepare different morphologies and compositions of Copper Base Sulfide Nanoparticles (CBSN).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.