Abstract

This article focuses on the mathematical model of the pitch control mechanism for a marine controllable pitch propeller, with the aim of describing the dynamic behaviour of this kind of system and its influence on ship performance. Too great a load on the blades can result in high pressures in the actuating system, response delays and control system problems, which are ultimately responsible for most mechanism failures. The behaviour of the controllable pitch propeller actuating mechanism is considered in terms of blade position, oil pressures inside the controllable pitch propeller hub and magnitudes of the forces acting on the blades. In the proposed mathematical model, the forces acting on the propeller blade are evaluated taking into account the yaw motion of the ship, the propeller speed (including shaft accelerations and decelerations) and the turning of the blade during the pitch change. On the basis of the introduced procedure, a controllable pitch propeller numerical model as part of an overall propulsion and manoeuvrability simulator representing the dynamic behaviour of a twin-screw fast vessel is developed. The aim of this work is to represent the ship propulsion dynamics through time-domain simulation, based on which the designers can develop and test several design options, in order to avoid possible machinery overloads with their consequent failures and to obtain the best possible ship performances. In this aspect, the controllable pitch propeller model is an essential design tool.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call