Abstract

Depending on one graphene monolayer solely, two absorption modes are obtained in a double-cavity photonic crystal. The Fabry–Perot (FP) resonance or Fano resonance can be excited in the graphene cavity, while the FP resonance only is enabled in the empty cavity. At each resonance, the perfect absorption is realized in the case of critical coupling. By controlling the chemical potential of graphene, two FP resonance modes can be tuned independently. In the presence of the embedding inaccuracy of graphene, the FP resonance mode is robust and yet the Fano resonance mode behaves more sensitively. By changing the geometries of two cavities, FP–FP resonances or FP-Fano resonances are coupled to generate the peculiar coupling lineshape. Finally, the absorption structure allows to be characterized by perfect absorption, double modes, few graphene, flexible tuning and coupling lineshape.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.