Abstract
AbstractScalable substitutional doping of 2D transition metal dichalcogenides is a prerequisite to developing next‐generation logic and memory devices based on 2D materials. To date, doping efforts are still nascent. Here, scalable growth and vanadium (V) doping of 2D WSe2 at front‐end‐of‐line and back‐end‐of‐line compatible temperatures of 800 and 400 °C, respectively, is reported. A combination of experimental and theoretical studies confirm that vanadium atoms substitutionally replace tungsten in WSe2, which results in p‐type doping via the introduction of discrete defect levels that lie close to the valence band maxima. The p‐type nature of the V dopants is further verified by constructed field‐effect transistors, where hole conduction becomes dominant with increasing vanadium concentration. Hence, this study presents a method to precisely control the density of intentionally introduced impurities, which is indispensable in the production of electronic‐grade wafer‐scale extrinsic 2D semiconductors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.