Abstract

Abstract An electrocatalytic membrane reactor (ECMR) with an anode consisting of Pt nanoparticles (NPs) loaded on a Ti membrane electrode (Pt NPs/Ti) was designed to oxidize cyclohexanone (K) to produce sodium adipate (SA) under mild conditions. The effects of residence time, reaction temperature, current density and initial K concentration on K conversion were investigated. Optimization experiments were conducted to determine the effects of and interactions between different operating parameters on K conversion using a central composite design within the response surface methodology. A 88.3% conversion of K and 99% selectivity to SA were obtained by the ECMR under the optimum conditions of reaction temperature = 30.8 °C, K concentration = 22.54 mmol L−1, residence time = 25 min and current density = 2.07 mA cm−2. The high performance of the ECMR is attributed to electrocatalytic oxidation (at the Pt NPs/Ti electrode), convection-enhanced mass transfer, and the timely removal of the desired products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.