Abstract

The generation of realistic motion satisfying user-defined requirements is one of the most important goals of computer animation. Our aim in this paper is the synthesis of realistic, controllable motion for lightweight natural objects in a gaseous medium. We formulate this problem as a large-scale spacetime optimization with user controls and fluid motion equations as constraints. We have devised novel and effective methods to make this large optimization tractable. Initial trajectories are generated with data-driven synthesis based on stylistic motion planning. Smoothed particle hydrodynamics (SPH) is used during optimization to produce fluid simulations at a reasonable computational cost, while interesting vortex-based fluid motion is generated by recording the presence of vortices in the initial trajectories and maintaining them through optimization. Object rotations are refined as a postprocess to enhance the visual quality of the results. We demonstrate our techniques on a number of animations involving single or multiple objects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.