Abstract

Nickel–cobalt carbonate hydroxide with a three-dimensional (3D) sea-urchin-like structure was successfully developed by the hydrothermal process. The obtained structure enables the enhancement of charge/ion diffusion for the high-performance supercapacitor electrodes. The mole ratio of nickel to cobalt plays a vital role in the densely packed sea-urchin-like structure formation and electrochemical properties. At optimized nickel/cobalt mole ratio (1:2), the highest specific capacitance of 950.2 F g–1 at 1 A g–1 and the excellent cycling stability of 178.3% after 3000 charging/discharging cycles at 40 mV s–1 are achieved. This nickel–cobalt carbonate hydroxide electrode yields an energy density in the range of 42.9–15.8 Wh kg–1, with power density in the range of 285.0–2849.9 W kg–1. The charge/discharge mechanism at the atomic level as monitored by time-resolved X-ray absorption spectroscopy (TR-XAS) indicates that the high capacitance behavior in a nickel–cobalt carbonate hydroxide is mainly dominated by cobalt carbonate hydroxide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.