Abstract

This study analyzes the synthesis of carbon-supported core–shell structured Cu@Pd catalysts (Cu@Pd/C) through a galvanic replacement reaction to be utilized in the electrocatalytic oxidation of formic acid. The strategy used in this study explores the relationship among lattice strain, electronic structure, and catalytic performance. X-ray diffraction and X-ray photoelectron spectroscopy indicate that the inclusion of Cu in the nanocatalyst increases lattice strain and results in a downshift of the d-band of palladium. Electrochemical tests show that Cu@Pd/C catalysts exhibit weaker adsorption strength for CO with increased Cu content, which can be attributed to the downshift of the electronic d-band. For the synthesized materials, the Cu@Pd/C catalyst with a Cu:Pd atomic ratio of 27:73 is found to have the highest activity for formic acid oxidation. A peaklike plot between activity and atomic composition is acquired and reveals the relationship among lattice strain, electronic structure, and catalytic pe...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.