Abstract

A core–shell structured Mg(OH)2/PS with enhanced surface lipophilicity was successfully synthesized by a microemulsion template. The core magnesium hydroxide was prepared in a cetyltrimethyl ammonium bromide (CTAB)/isopropanol/cyclohexane/water microemulsion, and the shell polystyrene (PS) was formed in situ by adding styrene monomer into oil phase of the microemulsion. The Mg(OH)2/PS core–shell nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), thermogravimetry/differential scanning calorimetry (TG/DSC) and Fourier transform infrared spectroscopy (FT-IR). The results indicated that the obtained nanoparticles is a core–shell structure and well-dispersed; the polystyrene shell thicknesses could be controlled in the range of 9.11 to 13.36 nm by simply changing the dosage of styrene monomer. Due to its polymer coating modification and integrated core–shell structure, the Mg(OH)2/PS is with excellent surface lipophilicity and easy to mix with the organic phase. The results provide a facile method to produce the surface-modified inorganic material for functionality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.