Abstract
Controllable droplet manipulation is crucial in diverse scientific and engineering fields. Traditional electric-based methods usually rely on commercial high-voltage (HV) power sources, which are typically bulky, expensive, and potentially hazardous. The triboelectric nanogenerator (TENG) is a highly studied device that can generate HV output with limited current, showing great potential in droplet manipulation applications. However, current TENG-based approaches usually utilize traditional free-standing TENGs that produce short-pulsed alternating-current signals. This limitation hinders continuous electrostatic forces necessary for precise droplet control, leading to complex circuitry and suboptimal droplet motion control in terms of volume, distance, direction, and momentum. Here, a triboelectric contactless charge injection (TCCI) method employing a novel dual-functional triboelectric nanogenerator (DF-TENG), is proposed. The DF-TENG can produce both high voltage and constant current during unidirectional motion, enabling continuous corona discharges for contactless charge injection into the droplets. Using this method, a large-volume droplet (3000 µL) can be controlled with momentum up to 115.2 g mm s-1, quintupling the highest value recorded by the traditional methods. Moreover, the TCCI method is adaptable for a variety of non-slippery substrates and droplets of different compositions and viscosities, which makes it an ideal manipulation strategy for droplet transport, chemical reactions, and even driving solids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.