Abstract

Nanoscale surface modification of a fractured Nb-doped SrTiO3 surface is demonstrated in a controlled way by scanning tunneling microscopy. By applying positive voltage pulses, holes can be created and the width and depth of the hole can be controlled by selecting the appropriate bias and pulse duration. The process shows a threshold condition for creation of the holes and change in the local electronic density of state consistent with exposure of the underlying TiO2 layer by removal of SrO. By applying negative bias, the hole can be partially refilled from the transfer of adsorbates on the tip.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.