Abstract

Glucose detection is very important in biological analysis, clinical diagnosis and the food industry, and especially for the routine monitoring of diabetes. This work presents an electrochemical approach to the detection of glucose based on Prussian blue (PB) nanostructures/carboxylic group-functionalized carbon nanofiber (FCNF) nanocomposites. The hybrid nanocomposites were constructed by growing PB onto the FCNFs. The obtained PB–FCNF nanocomposites were characterized by scanning electron microscopy, x-ray diffraction and x-ray photoelectron spectroscopy. The mechanism of formation of PB–FCNF nanocomposites was investigated and is discussed in detail. The PB–FCNF modified glassy carbon electrode (PB–FCNF/GCE) shows good electrocatalysis toward the reduction of H2O2, a product from the reduction of O2 followed by glucose oxidase (GOD) catalysis of the oxidation of glucose to gluconic acid. Further immobilizing GOD on the PB–FCNF/GCE, an amperometric glucose biosensor was achieved by monitoring the generated H2O2 under a relatively negative potential. The resulting glucose biosensor exhibited a rapid response of 5 s, a low detection limit of 0.5 μM, a wide linear range of 0.02–12 mM, a high sensitivity of 35.94 μA cm−2 mM−1, as well as good stability, repeatability and selectivity. The sensor might be promising for practical application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.