Abstract

Monolayer MoS2 is an emerging two-dimensional semiconductor with wide-ranging potential applications in novel electronic and optoelectronic devices. Here, we reported controlled vapor phase growth of hybrid spiral-like MoS2 crystals investigated by multiple means of X-Ray photoemission spectroscopy, scanning electron microscopy, atomic force microscopy, kelvin probe force microscopy, Raman and Photoluminescence techniques. Morphological characterizations reveal an intriguing hybrid spiral-like MoS2 feature whose lower planes are AB Bernal stacking and upper structure is spiral. We ascribe the hybrid spiral-like structure to a screw dislocation drive growth mechanism owing to lower supersaturation and layer-by-layer growth mode. In addition, the electrostatic properties of MoS2 microflakes with hybrid spiral structures are obvious inhomogeneous and dependent on morphology manifested by kelvin probe force microscopy. Our work deepens the understanding of growth mechanisms of CVD-grown MoS2, which is also adoptable to other TMDC materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.