Abstract

Electrospinning technology is taken as the most versatile process to generate continuous nanofibers. However, effects should be taken to achieve better understanding and precisely control the actual mechanics in the formation of nanofibers through better system design. In this article, the diameter and the deposition area of the as-prepared nanofibers can be controlled by added helix tube which can provide external electric-magnetic field. The spinning process can be controlled employing a magnetic flux (B) analytical model which is based on the magnetic field calculation modelof the solution and the electrostatic charge repulsion in the jet. This method includes the thermo-mechanical properties based on as-prepared electrospun nanofiber films and the capability of tribology-mechanical and mathematical physics. A novel investigation of the whole output increase at per unit spinning area is presented in this article to describe the whipping instability which is an important feature of the Taylor Cone phenomenon. The present design and process for electrospinning are based on a solution differential calculus, which a single stainless steel spinning nozzle can generate multi-squirt flow. With the purpose of providing useful jet initial behaviour design for the further technology applications, we attempt to set up a differential calculus method with evenly distributed circumferential electric field, yet giving more design guidance to produce controllable nanofibers through magnetic-field-assisted electrospinning technology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call