Abstract

Intelligent control of friction is an attractive but challenging topic. In this work, it is investigated if it would be possible to adjust friction in a lubricated contact by controlling environmental humidity. By exploiting the ability to adjust the environmental humidity by various saturated salt solutions, friction behavior of contacts lubricated with Choline l‐Proline ([Cho][Pro]) is modulated in a wide range of relative humidity (RH). The friction increases when the environmental humidity is increased and decreases when water is partially evaporated to a lower RH. It is thus possible to control friction by environmental humidity. The addition of water in ionic liquids (ILs) causes a decrease in viscosity, but as the tests are calculated to be performed in boundary lubrication the viscosity change is not the main factor for the change in friction. The friction sensitivity of RH can be explained by the effect of adhesion on the water uptake from humid air by [Cho][Pro]. Furthermore, the reversible changes of H‐bond types determined by the water content could be another explanation to the altered friction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.