Abstract

Pt nanospheres with an average diameter of 60±10 nm have been successfully synthesized at room temperature through a facile polyoxometalate(POM)-assisted process. Characterization by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) clearly showed that these Pt nanospheres consisted of 2–7 nm Pt nanodots. During the formation of such unique nanostructures, POMs were found to serve as both catalyst and stabilizer. The size of the as-synthesized Pt nanospheres could be controlled solely by adjusting the molar ratio of POMs to H 2PtCl 6. A possible formation mechanism based on POMs-mediated electron transfer from ascorbic acid (AA) to PtCl 6 2− and AA-assisted aggregation was tentatively proposed to rationalize the formation of such nanostructures. Importantly, these specific Pt nanospheres exhibited good electrocatalytic activity towards the oxidation of methanol, making them promising for applications in direct methanol fuel cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.