Abstract

A growth strategy is presented for controllable fabrication of hollow In2O3 nanoparticles (NPs) via oxidation of In nanocrystals under electron beam irradiation. The morphology of the NPs can be tailored by changing the electron beam energy and current density. Yolk-shell NPs are preferentially formed under 200 keV electron beam irradiation, while hollow NPs are preferentially formed at 300 keV. This work confirms that electron beam irradiation is a valuable method for the engineering and modification of nanomaterials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call