Abstract

A straightforward and eco-friendly method is demonstrated to engineer magnetite (Fe3O4) nanoparticles well dispersed by an amorphous amylose-derived carbon (AMC) and reduced graphene oxide (RGO) framework. Naturally available amylose (AM) serves as both reducing agent for few-layered graphene oxide (GO) in the first mild redox coprecipitation system and precursor for small-sized pyrolytic AMC in the following thermal treatment. In particular, the presence of the AM molecules effectively limits the crystal growth kinetics for the akaganeite (FeOOH) in the intermediate FeOOH@AM/RGO sample, which contributes to the transformation to Fe3O4 nanoparticles with significantly controlled size in the final Fe3O4@AMC/RGO composite. As a result, both Fe3O4 nanoparticles and AMC domains are adjacently anchored on the larger sized RGO sheets, and a unique hierarchical structure has been engineered in the Fe3O4@AMC/RGO sample. Compared with the controlled Fe3O4@RGO sample, the Fe3O4@AMC/RGO composite exhibits remarkably enhanced initial coulombic efficiency, superior cycling stability and rate performance for lithium-ion storage. The mechanisms of the interaction between GO sheets and AM molecules as well as the inspiring electrochemical behaviors of the Fe3O4@AMC/RGO electrode have been revealed. The Fe3O4@AMC/RGO sample possesses good potential for scaling-up and finding applications in wider fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.