Abstract

We report the growth of amorphous carbon nanowalls with molten salt electrolytes and a carbonate carbon source at 600 °C on home-made Cu(111) foil as the growth substrate (and cathode). The nanometer thick nanowalls grow preferentially along symmetric slip lines on the Cu(111) surface and their ordered arrangement appears to also be dictated by the electrosynthesis parameters. Computational chemistry suggests that nucleation of carbon growth is favored at the slip lines (atomic steps) of the Cu(111) surface. The electrodeposited carbon structures can be varied by tuning the potential on the electrodes and temperature of the molten salt. The macro, micro, and nanoscale structure of the nanowalls was studied and is reported.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call