Abstract
A novel design of a multi-layered joint architecture, characterized by the controllable spatial distribution of ceramic reinforcements, was obtained, when brazing ZrB2-SiC ceramics and Ti-6Al-4 V reinforced by TiB whiskers with AgCu filler. To induce SiC reinforcements to cluster together, within the center of the filler and especially away from the ZrB2-SiC, SiC was added into joint, in the form of a SiC interlayer featuring a 3D-bridged network structure with continuous micro-channels infiltrated by capillary force by liquid filler during brazing. Different SiC particles were connected together, by micro-bridges being not destroyed during brazing. The layer rich in SiC could reduce thermal expansion mismatch between different substrates, the AgCu next to the ZrB2-SiC could relax the strain energy by high plastic deformation. Compared to joint brazed with single AgCu, joint strain energy decreased from 10.8 × 10−6 J to 8.6 × 10−6 J, accordingly joint shear strength increased from ∼5.4 MPa to ∼41.2 MPa.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.