Abstract
Co-delivery of several drugs has been regarded as an alternative strategy for achieving enhanced therapeutic effect. In this study, a co-delivery system based on the electrospun poly(lactic-co-glycolic acid) (PLGA)/mesoporous silica nanoparticles (MSNs) composite mat was designed for the co-encapsulation and prolonged release of one hydrophilic and one hydrophobic drug simultaneously. MSNs were chosen to load the hydrophobic model drug fluorescein (FLU) and hydrophilic model drug rhodamine B (RHB), respectively (named as RHB-loaded MSNs and FLU-loaded MSNs). Two kinds of drug-loaded MSNs were incorporated into the polymer matrix to form a fibrous structure by blending electrospinning. The effect of the weight ratios for the two kinds of drug-loaded MSNs and the initial PLGA concentrations on the drug release kinetics were systematically investigated. The results showed that both model drugs RHB and FLU maintained sustained delivery with controllable release kinetics during the releasing period, and the release kinetics was closely dependent on the loading ratios of two drug-loaded MSNs and the initial PLGA concentrations in the composite mats. The results suggest that the co-drug delivery system may be used for wound dressing that requires the combined therapy of several kinds of drugs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Biomedical Materials Research Part B: Applied Biomaterials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.