Abstract

Downsizing metal nanoparticles to single atoms (monoatomization of nanoparticles) has been actively pursued to maximize the metal utilization of noble-metal-based catalysts and regenerate the activity of agglomerated metal catalysts. However, precise control of monoatomization to optimize the catalytic performance remains a great challenge. Herein, we developed a laser ablation strategy to achieve the accurate regulation of Pt nanoparticles (PtNP) to Pt single atoms (Pt1) conversion on CeO2. Owing to the excellent tunability of input laser energy, the proportion of Pt1 versus total Pt on CeO2 can be precisely controlled from 0 to 100% by setting different laser powers and irradiation times. The obtained Pt1PtNP/CeO2 catalyst with approximately 19% Pt1 and 81% PtNP exhibited much-enhanced CO oxidation activity than Pt1/CeO2, PtNP/CeO2, and other Pt1PtNP/CeO2 catalysts. Density functional theory (DFT) calculations showed that PtNP was the major active center for CO oxidation, while Pt1 changed the chemical potential of lattice oxygen on CeO2, which decreased the energy barrier required for CO oxidation by lattice oxygen and resulted in an overall performance improvement. This work provides a reliable strategy to redisperse metal nanoparticles for designing catalysts with various single-atom/nanoparticle ratios from a top-down path and valuable insights into understanding the synergistic effect of nano-single-atom catalysts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call