Abstract

Aluminum alloy corrosion resistance could be improved by micro-nanostructures on superhydrophobic surfaces, but inadequate mechanical stability remains a bottleneck concern in the sector. Herein, femtosecond laser processing and spray modification techniques are employed to fabricate “armor-style” micro-nanostructures on aluminum alloy surfaces. The construction of durable superhydrophobic surfaces was controllably constructed using this strategy. Applying a spray of hydrophobic nano silica onto the surface of aluminum alloys is an effective method for creating a low surface energy coating, while the femtosecond laser-processed “armor-style” micro-nano structure offers additional adhesion sites for the hydrophobic nano-silica. The findings indicated that the treated surface’s contact angle (CA) reached 152.5° while the slide angle (SA) was only 2.3°, exhibiting favorable superhydrophobic performance. Being worn 100 times with 400# sandpaper, the superhydrophobic surface retained a contact angle above 150°. Electrochemical tests demonstrated significant reductions in the self-corrosion current of superhydrophobic surfaces. Meanwhile, the impedance increased significantly, showing good thermal, mechanical, and chemical stability, enabling better sustainable use of aluminum alloys. These results will serve as a theoretical foundation for the surface protection of aluminum alloys.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.