Abstract

Glass ceramic has been regarded as an alternative to traditional bulk materials such as single crystal and transparent ceramic. The nucleation/growth behavior of glass ceramic via crystallization is an important topic but is seldom studied so far. In the present work, a series of La3+-based oxyfluoride aluminosilicate glasses are designed to understand their nanocrystallization processes upon heating. Impressively, controllable LaF3, α-NaLaF4 and β-NaLaF4 phase-competitive crystallization in glasses is achieved and structural/spectroscopic characterizations confirm the key role of Al/Si ratio to determine the release of Na+ ions from glass network to participate in crystallization and phase transformation. Furthermore, the developed glass ceramics are evidenced to be ideal hosts for lanthanide dopants (such as Eu3+ and Yb3+/Er3+), which can effectively incorporate into the precipitated fluoride crystal lattices by substituting La3+ ions. As a consequence, incoherent LED-excitable upconverting devices are constructed to demonstrate their promising application as emitting media in display.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.