Abstract

Using kinetic Monte Carlo simulations of a simple coarse-grained model, we demonstrate that the self-assembly of oppositely charged nanoparticles is a promising approach to design efficient bulk heterojunction (BHJ) solar cells. Simulations are performed starting from a random configuration of oppositely charged nanoparticles in solution for a range of concentrations. Interconnected percolated morphologies form at high nanoparticle concentrations, when the aggregate growth ceases after certain time. If only Coulombic interactions are present, the observed morphologies have very high interfacial area but too small domain size, whereas optimum values of both the interfacial area and domain size are desired for BHJ. We therefore propose and establish that an additional hydrophobic attraction between nanoparticles of same type is desired to obtain the ideal BHJ morphology. We also discuss the effects of solvent dielectric constant and the size- and charge-asymmetry of nanoparticles, which may provide addition...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call