Abstract

Single atoms are interesting candidates for studying quantum optics and quantum information processing. Recently, trapping and manipulation of single atoms using tight optical dipole traps has generated considerable interest. Here we report an experimental investigation of the dynamics of atoms in a modified optical dipole trap with a backward propagating dipole trap beam, where a change in the two-atom collision rate by six times has been achieved. The theoretical model presented gives a prediction of high probabilities of few-atom loading rates under proper experimental conditions. This work provides an alternative approach to the control of the few-atom dynamics in a dipole trap and the study of the collective quantum optical effects of a few atoms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call