Abstract
In recent years, CE-integrated immobilized enzyme reactors (IMERs) for single-enzyme immobilization have attracted considerable attention. However, there has been little research on multienzyme immobilization in CE. Here, we introduce a method for fabricating a CE-integrated IMER, using DNA-directed immobilization to fix glucose oxidase and horseradish peroxidase in the capillary, which had been functionalized with polyamidoamine dendrimer (PAMAM). Owing to the reversibility of DNA hybridization, the reactor is capable of dynamic immobilization. Moreover, by introducing the PAMAM, the loading capacity of the IMER is greatly enhanced, and the PAMAM can spontaneously form complexes with DNA and then contribute to the efficiency and stability of the reactor. After 25 days storage, the prepared IMER ultimately retained approximately 70% of its initial activity. We also used the IMER to detect glucose, and the favorable linearity was obtained over the concentration range of 0.78-12.5mM, with an LOD of 0.39mM, demonstrating that the CE-integrated IMER can be applied to actual samples. We believe that this strategy can be extended to other multienzyme immobilization systems, and CE-integrated IMERs are potentially useful in a wide range of biochemical research applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.