Abstract

Construction of three-dimensional (3D) flower-like nanostructures with controlled morphologies has emerged as an attractive tool by scientists in the marine electric field sensor research field due to their peculiar structural features. Herein, novel 3D flower-like Ag-CF capacitive composite electrodes have been created by an eco-friendly water-bath strategy via AgNO3 as a sliver source and subsequently compounded with carbon fibers (CFs) pretreated by thermal oxidation. A series of electrode samples with various morphologies obtained by modulating different reaction times and temperatures bring about the dominant formation mechanism of these nanostructures and the influence behavior on the CF electrode in detail. Especially, the 3D flower-like Ag-CF electrode shows a large surface area acquired under the conditions of 80 °C and 15 min, which can provide more electroactive sites in electrochemical analysis and exhibit a maximum areal specific capacitance of 619.75 mF·cm-2 at a scanning speed of 10 mV·s-1. This is mainly due to the synergistic behavior of the unique 3D flower-like morphology and the large specific surface area of CFs. Furthermore, a cylinder-shaped Ag-CF sensor is designed, which delivers a superior potential difference of 33.08 μV, a potential difference drift of 18.62 μV/24 h for 30 days, and a self-noise of 0.92 nV/rt (Hz)@1 Hz. In this work, the intriguing synthesis strategy can be a promising facile approach to manufacture the controllable 3D flower-like Ag-CF electrode for electric field sensor applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call