Abstract
How to control large complex networks is a great challenge. Recent studies have proved that the whole network can be sufficiently steered by injecting control signals into a minimum set of driver nodes, and the minimum numbers of driver nodes for many real networks are high, indicating that it is difficult to control them. For some large natural and technological networks, it is impossible and not feasible to control the full network. For example, in biological networks like large-scale gene regulatory networks it is impossible to control all the genes. This prompts us to explore the question how to choose partial networks that are easy for controlling and important in networked systems. In this work, we propose a method to achieve this goal. By computing the minimum driver nodes densities of the partial networks of Erdös–Rényi (ER) networks, scale-free (SF) networks and 23 real networks, we find that our method performs better than random method that chooses nodes randomly. Moreover, we find that the nodes chosen by our method tend to be the essential elements of the whole systems, via studying the nodes chosen by our method of a real human signaling network and a human protein interaction network and discovering that the chosen nodes from these networks tend to be cancer-associated genes. The implementation of our method shows some interesting connections between the structure and the controllability of networks, improving our understanding of the control principles of complex systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica A: Statistical Mechanics and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.