Abstract

A pair of bodies rolling on each other is an interesting example of nonholonomic systems in control theory. There is a geometric condition equivalent to the rolling constraint which enables us to generalize the rolling motions for any two-dimensional Riemannian manifolds. This system has a five-dimensional phase space. In order to study the controllability of the rolling surfaces, we lift the system to a six-dimensional space and show that the lifted system is controllable unless the two surfaces have isometric universal covering spaces. In the non-controllable case there are some three-dimensional orbits each of which corresponds to an isometry of the universal covering spaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.