Abstract

In this paper the structural controllability and observability of heat exchanger networks are determined from qualitative information about the heat exchangers and their network topology. The heat exchanger network is modelled as a time-varying linear system based on first engineering principles where the effect of the flowrate variations is described by unknown time-varying parameters, inlet temperature variations are regarded as disturbances and external heaters/coolers are considered as input variables. Necessary and sufficient conditions for structural controllability and observability of heat exchanger networks are derived, based on an extended Kalman-type rank criterion for linear systems with time-varying parameters. Determining the structural controllability and observability of heat exchanger networks needs only checks for the input and output connectability of the network in both constant and time-varying parameter cases. The results are extended to the more-practical case where bypass ratios are also used as control variables and where more than one time-varying parameter enters into the state-space matrices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.