Abstract
Previously, the controllability problem of a linear time-invariant dynamical system was mapped to the maximum matching (MM) problem on the bipartite representation of the underlying directed graph, and the sizes of MMs on random bipartite graphs were calculated analytically with the cavity method at zero temperature limit. Here we present an alternative theory to estimate MM sizes based on the core percolation theory and the perfect matching of cores. Our theory is much more simplified and easily interpreted, and can estimate MM sizes on random graphs with or without symmetry between out- and in-degree distributions. Our result helps to illuminate the fundamental connection between the controllability problem and the underlying structure of complex systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.