Abstract

This paper is a review of current research on applications of control systems and theory to achieve energy conservation in automotive vehicles. The development of internal combustion engine control systems that modulate fuel flow, air flow, ignition timing and duration, and exhaust gas recirculation is discussed. The relative advantages of physical and empirical models for engine performance are reviewed. Control strategies presented include optimized open-loop schedule type systems, closed-loop feedback systems, and adaptive controllers. The development of power train and hybrid vehicle control systems is presented, including controllers for both conventional transmissions and those employing flywheel energy storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.