Abstract

Abstraet-Micromanipulation by microrobots has become an issue of primary importance in industry and biomedicine, since human manual capabilities are restricted to certain tolerances. The manipulation of biological cells or the assembly of a microsystem composed of several microcomponents are good examples. An automated microrobot-based micromanipulation desktop station has been developed at the University of Karlsruhe. The process of assembly takes place in the field of view of a light optical microscope. This paper focuses on motion control problems of the piezo-driven microrobots employed by the station. The ability to adapt itself to the process requirements is of great importance for micromanipulation robots. They must be able to operate in a partially defined environment and to ensure reasonable behavior in unpredicted situations. A neural control concept based on a reference model is proposed as a solution. It is shown that the neural controller is able to learn the desired behavior. It considerably outperforms an analytically designed linear controller in the real environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.