Abstract
This paper addresses the problem of control synthesis for nonlinear optimal control problems in the presence of state and input constraints. The presented approach relies upon transforming the given problem into an infinite-dimensional linear program over the space of measures. To generate approximations to this infinite-dimensional program, a sequence of Semi-Definite Programs (SDP)s is formulated in the instance of polynomial cost and dynamics with semi-algebraic state and bounded input constraints. A method to extract a polynomial control function from each SDP is also given. This paper proves that the controller synthesized from each of these SDPs generates a sequence of values that converge from below to the value of the optimal control of the original optimal control problem. In contrast to existing approaches, the presented method does not assume that the optimal control is continuous while still proving that the sequence of approximations is optimal. Moreover, the sequence of controllers that are synthesized using the presented approach are proven to converge to the true optimal control. The performance of the presented method is demonstrated on three examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.