Abstract

Frequency control in autonomous microgrids (MG) with high penetration of renewable energy sources represents a great concern to ensure the system stability. In this regard, this paper presents an enhanced control method for battery energy storage systems (BESS) to support the frequency of MG and with the ability of disconnecting from the MG to supplying in the island mode a local consumer. A frequency controller, combining a conventional droop control with an inertia emulation function, governs the BESS active power transfer during the primary frequency control level. The BESS may also provide voltage support in the point of common coupling with the MG. Moreover, the proposed BESS may compensate, partially or totally, the power absorbed by the local loads in order to improve the MG frequency response. When the MG power quality worsens below a certain level, in terms of voltage and frequency, the BESS detaches from the MG and continues to operate islanded. The reconnection is accomplished following a smoothly resynchronization of the local voltage with the MG, without disturbing the local loads supply. Additionally, this paper also discusses about the aspects related to the BESS management and its integration within the proposed system. The simulation and experimental results assess the feasibility of the proposed control solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.