Abstract

The DR-HVDC (Diode rectifier-based HVDC) transmission topology was recently proposed for integration on large offshore wind farms due to its low investment cost and high reliability. To further reduce the investment, a DC collection topology based on the series-connected diode rectifiers (DR) is proposed, where no offshore platform is needed. However, units of series-connected topology (SCU) show coupling issues, such as overvoltage, energy curtailment, and fault isolation. First, the coupling mechanism is analyzed, and a suitable operation mode for SCUs is selected to ensure the safe operation of the DC system. Then, the linear relationship of active power and output DC current and DC voltage of SCUs is analyzed, and a novel coordinate control strategy for DC wind farms is proposed, where an onshore converter adapts a DC current controller and wind turbines adapt a mediate output voltage control strategy. The mediate output voltage control strategy includes a triple loop with power loop, mediate output voltage loop, and current loop. Also, the DC open line fault, DC grounding fault, and AC grounding fault of the onshore grid are investigated, and a protection strategy is proposed. A 160 MW wind farm with a DR-SCU DC collection system is built in PSCAD/EMTDC to verify the validity of the proposed control strategy under unequal wind speeds, DC fault, and onshore AC fault, and the results validate the performance of the proposed strategy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call