Abstract

Inverter-based distributed generation plays a vital role in the stability and reliability of new power systems. Under voltage sags, these systems must remain connected to the electrical network according to the stringent requirements of grid codes (GCs). Low-voltage ride-through (LVRT) control strategies are becoming a common trend in power electronics research. However, previous studies of these control strategies have not dealt with the different possible scenarios presented by new GCs, and many of them focus on a very limited number of control objectives. In this study, an algorithm to maximize the converter capabilities was developed and subjected to experimental tests during different voltage sags. In this research, based on unbalanced voltage drops of several severity levels, six different cases of current injection are identified while taking into consideration the restrictions imposed by GCs. The research results represent a further step toward the development of flexible controllers adaptable to the environments of intelligent electricity grids with high integration of distributed generation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call