Abstract

This study focuses on extending the duration of unmanned aerial vehicles (UAVs) by improving their power systems and introduces an extended endurance system (EES) for UAVs using a combination of lithium-ion batteries (LiBs) and lithium-ion capacitors (LiCs). Subsequently, a novel control strategy is proposed within the EES to enhance the UAV's endurance by improving the LiB's utilization. The EES control strategy incorporates the Lic's utilization to supplement the load with additional energy once the LiB is depleted. This implementation extends the flight duration and surpasses the duration extension resulting from reducing the LiB concentration polarization phenomenon due to the LiC. The hardware experiment and the simulation verify the proposed EES. The results indicate that the extension of UAV's endurance brought about by LiC is limited. Notably, the extension in endurance is primarily attributed to the innovative control strategy implemented within the proposed EES. Due to the LiC, this strategy significantly enhances the LiB's utilization by mitigating the concentration polarization phenomenon associated with it. As a result, the LiB's energy (utilization%) experiences substantial increments of 16.0 %, 25.5 %, and 22.7 % during hovering, altitude variation, and loaded hovering scenarios, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.