Abstract

High voltage ride through (HVRT) control strategies for doubly-fed induction wind turbines (DFIG) have mostly focused on the rotor side converter, while the reactive power compensation capability of the grid side converter and the impact of grid side converter current transients have often been ignored on the DC bus voltage and reactive power. Therefore, a control strategy based on grid side current dynamic change characteristics is proposed, which resets the reference values of the grid side active and reactive currents for wind turbine HVRT to ensure partial absorption of reactive power on the grid side. Secondly, the key parameter in the proposed control strategy is optimization to get the most suitable DC bus voltage value with the grey wolf algorithm. Finally, the grid-integrated wind turbine simulation model is built on the MATLAB/SIMULINK and RT-Lab platforms. The simulation test results show that the proposed HVRT control strategy and its parameter optimization method are effective, DFIG can achieve HVRT when the wind turbine voltage rises to 1.3 pu.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call