Abstract
As a partner in the International Space Station (ISS), Canada is responsible for the verification of all tasks involving the special purpose dextrous manipulator (SPDM). Those verifications cannot be performed using software simulators only since the accuracy of existing contact dynamic models are yet to be confirmed, especially in the real-time mode required for verifying human operated processes. One option is to use a hardware-in-the-loop simulation (HLS), where the space hardware is simulated and the contact dynamics is emulated using a rigid robot performing the tasks. The main difficulty in this approach is the trade-off between the stability of the control loop and good performance. The control of the rigid robot in the HLS is investigated. Simplified linear systems are used to determine the limitations of the classical position-based control when contact occurs. A new control scheme in which the slave robot is driven in acceleration is proposed. Both methods were tested experimentally and the results show the benefit of using this new acceleration control approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.