Abstract
Given two control Lyapunov functions (CLFs), a “merging” is a new CLF whose gradient is a positive combination of the gradients of the two parents CLFs. The merging function is an important trade-off since this new function may, for instance, approximate one of the two parents functions close to the origin, while being close to the other far away. For nonlinear control-affine systems, some equivalence properties are shown between the control-sharing property, i.e., the existence of a single control law which makes simultaneously negative the Lyapunov derivatives of the two given CLFs, and the existence of merging CLFs. It is shown that, even for linear time-invariant systems, the control-sharing property does not always hold, with the remarkable exception of planar systems. The class of linear differential inclusions is also discussed and similar equivalence results are presented. For this class of systems, linear matrix inequalities conditions are provided to guarantee the control-sharing property. Finally, a constructive procedure, based on the recently considered “R-functions,” is defined to merge two smooth positively homogeneous CLFs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.