Abstract

This paper presents a two-step method for control-relevant model reduction of Volterra series models. First, using the nonlinear IMC design as a basis, an explicit expression relating the closed-loop performance to the open-loop modeling error is obtained. Secondly, an optimization problem that seeks to minimize the closed-loop error subject to the restriction of a reduced-order model is posed. By showing that model reduction of kernels with different degrees can be decoupled in the problem formulation, the optimization problem is simplified into a mathematically more convenient form which can be solved with significantly less computational effort. The effectiveness of the proposed method is illustrated on a polymerization reactor example where a second-order Volterra model with 85 parameters is reduced to a Hammerstein model with 3 parameters. Despite the lower ‘open-loop’ predictive ability of the control-relevant model, the closed-loop performance of the reduced-order control system closely mimics that of the full order model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.