Abstract
Catheter-associated urinary tract infections (CAUTIs) are common and pose significant costs to healthcare systems. To date, this problem is largely unsolved as commercially available antimicrobial catheters are still lacking in functionality and performance. A prior study by Lim et al. ( Biotechnol. Bioeng. 2018, 115 (8), 2000-2012) reported the development of a novel anhydrous polycaprolactone (PCL) polymer formulation with controlled-release functionality for antimicrobial peptides. In this follow-up study, we developed an improved antimicrobial peptide (AMP)-impregnated poly(ethylene glycol) (PEG)-polycaprolactone (PCL) anhydrous polymer coating for enhanced sustained controlled-release functionality to provide catheters with effective antimicrobial properties. Varying the ratio of PEG and PEG-PCL copolymers resulted in polymers with different morphologies, consequently affecting the AMP release profiles. The optimal coating, formulated with 10% (w/w) PEG-PCL in PCL, achieved a controlled AMP release rate of 31.65 ± 6.85 μg/mL daily for up to 19 days, with a moderate initial burst release. Such profile is desired for antimicrobial coating as the initial burst release acts as a sterilizer to kill the bacteria present in the urinary tract upon insertion, and the subsequent linear release functions as a prophylaxis to deter opportunistic microbial infections. As a proof-of-concept application, our optimized coating was then applied to a commercial silicone catheter for further antibacterial tests. Preliminary results revealed that our coated catheters outperformed commercial silver-based antimicrobial catheters in terms of antimicrobial performance and sustainability, lasting for 4 days. Application of the controlled-release coating also aids in retarding biofilm formation, showing a lower extent of biofilm formation at the end of seven inoculation cycles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.