Abstract

AbstractThree control problems for the system of two coupled differential equations governing the dynamics of an energy harvesting model are studied. The system consists of the equation of an Euler–Bernoulli beam model and the equation representing the Kirchhoff's electric circuit law. Both equations contain coupling terms representing the inverse and direct piezoelectric effects. The system is reformulated as a single evolution equation in the state space of 3‐component functions. The control is introduced as a separable forcing term on the right‐hand side of the operator equation. The first control problem deals with an explicit construction of that steers an initial state to zero on a time interval [0, T]. The second control problem deals with the construction of such that the voltage output is equal to some given function (with being given as well). The third control problem deals with an explicit construction of both the force profile, , and the control, , which generate the desired voltage output . Interpolation theory in the Hardy space of analytic functions is used in the solution of the second and third problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.